Shape Indexing Using Relational Vectors and Neural Networks
نویسنده
چکیده
In this paper, we propose a novel approach to generating topology preserving mapping of structural shapes using the self-organising maps (SOM). The structural information of the geometrical shapes is captured by the relational vectors. These relational attribute vectors are quantised using an SOM. Using this quatisation SOM, a histogram is generated for every shape. These histograms are treated as inputs to train another SOM which yields a topology preserving mapping of the geometric shapes. By appropriately choosing the relational vectors, it is possible to generate the mapping invariant to some chosen transformations such as rotation, translation, scale, aÆne or perspective. These SOMs may be organised into a tree-structure so that during the application phase the histogram of the query shape and the shapes most similar to the query shape can be retrieved eÆciently.
منابع مشابه
Shape indexing using self-organizing maps
In this paper, we propose a novel approach to generate the topology-preserving mapping of structural shapes using self-organizing maps (SOMs). The structural information of the geometrical shapes is captured by relational attribute vectors. These vectors are quantised using an SOM. Using this SOM, a histogram is generated for every shape. These histograms are treated as inputs to train another ...
متن کاملOn the use of Textural Features and Neural Networks for Leaf Recognition
for recognizing various types of plants, so automatic image recognition algorithms can extract to classify plant species and apply these features. Fast and accurate recognition of plants can have a significant impact on biodiversity management and increasing the effectiveness of the studies in this regard. These automatic methods have involved the development of recognition techniques and digi...
متن کاملIndexing of Ears using Radial basis Function Neural Network for Personal Identification
This paper elaborates a novel method to recognize persons using ear biometrics. We propose a method to index the ears using Radial Basis Function Neural Networks (RBFNN). In order to obtain the invariant features, an ear has been considered as a planar surface of irregular shape. The shape based features like planar area, moment of inertia with respect to minor and major axes, and radii of gyra...
متن کاملOPTIMUM SHAPE DESIGN OF DOUBLE-LAYER GRIDS BY QUANTUM BEHAVED PARTICLE SWARM OPTIMIZATION AND NEURAL NETWORKS
In this paper, a methodology is presented for optimum shape design of double-layer grids subject to gravity and earthquake loadings. The design variables are the number of divisions in two directions, the height between two layers and the cross-sectional areas of the structural elements. The objective function is the weight of the structure and the design constraints are some limitations on str...
متن کاملIdentification of selected monogeneans using image processing, artificial neural network and K-nearest neighbor
Abstract Over the last two decades, improvements in developing computational tools made significant contributions to the classification of biological specimens` images to their correspondence species. These days, identification of biological species is much easier for taxonomist and even non-taxonomists due to the development of automated computer techniques and systems. In this study, we d...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2001